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Diffusion-controlled A+ B — 0 reactions in constrained geometries are well-known to obey nonconventional
dimension-dependent kinetics. We investigate these kinetics in natrdwensional tubes to study the
crossovers from early timédimensional kinetics to eventual one-dimensional kinetics. We rely on a reaction
diffusion model that leads to analytically verifiable quantitative results. The crossover times are identified as
those times at which the kinetic exponent exhibits maximum curvature and are shown to be universally given
by t. = 0.034M%/D whereW is the width of the tube along a narrow direction dhs the diffusion coefficient

of both species. Our procedure overcomes many of the statistical difficulties inherent in Monte Carlo simulations
of this problem [Ahn, J.; Kopelman, R.; Argyrakis, P.Chem. Phys1999 110 2116].

1. Introduction show that the density as a function of time behaves classically
up to a crossover timé that scales as\ after which the
behavior is one-dimensional. For wider tubes there are two
crossovers, the first from classical to two-dimensional behavior
at aW-independent crossover time, followed by a crossover from
two-dimensional to one-dimensional behavior at a time that
scales a§ ~ W™ They discuss the exponemtsanda. in detail.

In particular, for Euclidean tubes the crossover times from
behavior characteristic of a higher dimension to one of lower
dimension scale ag ~ WA (i.e., o = 2).

Diffusion-limited reactions in constrained geometries obey
reaction kinetics that exhibit completely different exponents than
do well-mixed systems. This behavior is well understood for a
large variety of reactions, starting with the original system A
+ B — O first studied by Ovchinnikov and Zeldoviél#.When
there are initially equal densities of A and B present in a random
distribution in an infinite system of dimensidn< 4, the density
o(t) of either species decays asymptoticallyoéts ~ t~%4. The
departure from the classical decay lag) ~ t™* is obviously
dramatic in low dimensions and is due to the evolution of initial  1© Support these and_ other_ results, _Ahn et aI._carry_ out
fluctuations in the local species densities into ever larger regions extensive Monte Carlo simulations on discrete GUb'C latices.
in which one or the other species is predominant. Only efficient The results are presented as _graphs of_the time-dependent
mixing can overcome this evolution toward segregation, and &XPonentu (which they call=f) in the relationp ~ t*. The
diffusion is not sufficiently efficient in low dimensions. exponeng: crosses over from one plateau value to another and

Recent work™> deals with reaction kinetics of various types perhaps gno_ther; each pl_ateau ValL.’e is identified as _the exponent
and associated random walks in tubular geometries in which characteristic of a partlcglar regime (g, two:dlmensmnal
the system is very long in one dimension but small in the plateau followed by one-dlmen§|pnal plateau) V.V'th crossover
other(s). In these geometries the reactants or walkers at firstimes Whosé/V—dependence is difficult to _ascertam_from thgse
“don’t know” that they are moving in a confined space until S|mulat|i)ns oth_er tha_ln to support consistency with previous
they “become aware” of the confining walls, at which point results® The. S|mqlat|ons are done on.larg.e systems (several
one or more dimensions are effectively lost. Thus, it is expected thogsand lattice §|te§ along .the long d|rept|on, between 1 and
that the kinetic behavior at early times is two-dimensional or .20 n the short directions) with many particles that have to be
three-dimensional (depending on the dimensionality of the tube) individually tracked, an(_j averaged over many thousand§ of runs.
but that asymptotically it becomes typical of that of a one- Nevertheless, even thelr most acqurate (and very CPU-ln.tenswe)
dimensional system. There are a number of interesting Cross_results are rather noisy and exhibit unexplained behavior that

overs in the time dependences of the reactant densities in suc ay or may not be artifactual (we believe itis, as will be noted
tubular spaces as a function of various parameters such as th elow).. L .

tube width and the initial densities. For the A B reaction _In this paper we revisit this problem, that is, we study the
Ahn et al5 present a kinetic phase diagram showing a schematic kinetics of the stoichiometric A- B — 0 reaction in tubular
of the different regimes of behavior that are possible as a SPaces, but using methods that permit more accurate determi-
function of the widthW (short directions) of a finite tube. For nation of some exponents and crossovers. In particular, we study

example, for a two-dimensional tube with very smallthey the change in kinetic behavior in tubular geometries due to the
reduction of dimensionality. We determine not only scaling

* Permanent address: Departament dén@a-Fsica, Universitat de  Pehaviors with great accuracy, but we also determardficients
Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain. (which turn out to exhibit surprising universality).
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Figure 1. Time snapshots of the diffusion-limited reaction+AB — 0 in a narrow two-dimensional tube. The more abundant local density is
shown in (A) red or (B) blue. At first the evolution follows two-dimensional OZ kinetics, but after some time (at around the time of the third or
fourth snapshot) the evolution proceeds according to one-dimensional OZ kinetics.

In section 2 we present our model and discuss the particulardimensional tubular space is shown in Figures 1 and 2. In Figure
guantities to be obtained from it. In section 3 we present our 1 reactant A is shown in red and reactant B in blue, and we see
simulation results, which are further elucidated by a theoretical five consecutive time snapshots of the local densities. In each
analysis in section 4. A short commentary on the overshoot snapshot we show the color corresponding to the locally more
artifacts of Ahn et ab.is also offered in section 3. We conclude abundant reactant. In order to observe the segregation process
with a summary in section 5. more explicitly, we show in Figure 2 the complementary map
of reaction zones, namely, the product of the local concentra-
tions, in levels of gray. The initial segregation pattern evolves
well before the segregated clusters reach the boundaries: this
is evident in the second snapshot. This initial segregation occurs
according to two-dimensional OvchinnikeZeldovich (OZ)
kinetics characterized by the dega(y) ~ t~12 After some time,
the clusters of A and B become comparable in size to the width
9 5 of the tube. Beyond this time the further evolution of the system
A= DV o, — Kpapg proceeds according to one-dimensional OZ kings{ts~ t~14,

The transition between these two regimes occurs at the so-called

2. The Model

The approach of Ahn et al. is microscopic. We rely on a more
mesoscopic approach to the problem, namely the reagtion
diffusion equations for the local densitigg(r,t) and pg(r,t):

9 5 crossover time whose scaling behavior has motivated a con-
a8~ DV og — Kpaps ) siderable share of the previous work on the subject.
In this report we focus on the transitions between one OZ
whereD is the diffusion coefficient for both species aKds regime and another, namely, on transitions from OZ-2d to OZ-

the local reaction rate constant. Although these continuum 1d, from OZ-3d to OZ-1d, and from OZ-3d to OZ-2d. We do
equations may fail on the very shortest time scales, shortestnot analyze the situation (found for very narrow systems) where
distances, and very low densities, they reproduce the kinetic the transition occurs directly from the classical regime to the
features of the discrete microscopic system with remarkable OZ regime of lowest dimensionality. In particular, we concen-
accuracy on almost all scafeand are much easier and less trate on the crossover timég-q4, from OZ behavior associated
costly to deal with numerically than the fully microscopic With dimensiond; to that associated with lower dimensidsn
description’® A quantitative comparison of the results of These crossover times are obtained from density decay curves.
integrating these coupled differential equations with those We wish to establish the dependence of these crossover times
obtained from random walkers of types A and B on a discrete on the width of the system and on the other parameters of the
lattice that annihilate upon contact requires connection to be model, specifically the diffusion coefficient.

made between the lattice constant and time steps in the discrete It is in fact straightforward (and correct) to argue that the

problem and the parametdbsandK in the continuum modél. crossover times should scale as

As long as we are primarily interested in comparing scaling

behavior, it is not necessary to dwell on this point other than to t - ﬁ @)
di—d, D

note that the discrete simulations correspond to the lnit

o for the reaction rate constant. In our simulations we tdke o ] ) o
to be very large, so large that its finite value is of little This is a direct consequence of the fact that with free diffusion

consequence for this discussion. Note that the global density(Which describes the local density difference between the two
p(t) introduced earlier is just the integral p£(r t) or of pg(r t) specie§) the segregated zones grow in any directionvast
over the reaction volume. and that the boundaries of the system will be perceived when
A typical realization of the process obtained by numerical this length is of the order of the tube widthy ~ VDt
integration of the reactiondiffusion equations for a two-  Although eq 2 is correct, it has been difficult to corroborate it



A + B — 0 Reaction in Tubular Geometries J. Phys. Chem. A, Vol. 103, No. 40, 1998043

Figure 2. Reaction zones (product of local densities) in different levels of gray for the same system and the same snapshots as shown in Figure
1. Darker areas represent regions where the product is larger.
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Figure 3. Exponentu(t) as a function of time for narrow two-dimensional systems of legth 5000 and widthW. In the left partD = 0.05 is
fixed andW is varied. In the right partvV = 15 andD is varied. Each curve is an average over 10 realizations.

firmly from numerical simulation§ Furthermore, the coefficient _dlogp(t) _, __log p(t) — log p(ti—y) 3
in the relation has not been calculated or determined numeri- ©= dlogt ) ~ logt —t_, (3)
cally. We shall do both using the reactiediffusion model.

Our numerical solution of the reactiemliffusion model (eq 3. Numerical Results
1) relies on a standard discrete scheme with a centered form st we present our results for two-dimensional tubes and
for the Laplacian operator, a forward difference in time, and subsequently for three-dimensional ones.
periodic boundary conditions. We takiedimensional lattices We take our two-dimensional tubes to have a lenigth
and stoichiometric and randomly (absolutely uncorrelated) initial 5500 and widthw and carry out two series of calculations. In
distributions for the reactants. In all the simulations shown in o we fix the diffusion coefficienD = 0.05 and varyw
this work we takeK = 10 andp(0) = 1. The discretization between 4 and 30. In the other we TX= 15 and varyD from
parameters art = 0.01 andAx = 1 and are small enough to 925 to 0.1. The evolution of the resulting kinetic exponents
ensure numerical convergence. u(t) for both series is shown in Figure 3.

Lin and Kopelmahand also Ahn et &l.use reflecting rather The following features are immediately apparent from these
than periodic boundary conditions along the shorter dimension- results: (i) The first plateau corresponds to the two-dimensional
alities of the tubes. We have carefully ascertained within our Oz regime. The kinetic exponent goes through a short “induc-
model (and Li does as well within his random walk apprdich  tion” period from the very early classical behavipr¢ —1) in
that this does not lead to any significant differences in the results. which the kinetics is dominated by the reaction of A and B

The output of our numerical integrations yields the full time densities initially in the same discretization cells toward this
history of the decay of concentrations. We are specifically plateau. This induction period I3 dependent bu#V indepen-
interested in the kinetic exponemt By following the temporal dent. (i) Two-dimensional OZ behaviox (~ —1/2) persists
evolution of this exponent we can easily observe and identify for a longer time with increasingV. (iii) IncreasingD leads to
how the kinetic behavior changes from one regime to another. a shortening of the two-dimensional OZ interval (the process
We numerically computg in the following way: “arrives” at the boundaries more quickly). (iv) The transition
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Figure 4. log—log plots ofp(t) vs time for the systems in Figure 3. The crossover titaesfrom the two-dimensional OZ behavior (early times)

to the one-dimensional OZ behavior (asymptotic times) are found from the intersection of the linear fits (dashed lines) in both regimes. Table 1
contains these results.

to he asymplotc one-dimensional 02 behavior( _1i4)is  TABLE L, Crossover Times o Tn Dimeriigte Tubes
clear in all the S|muIaF|0ns. V) W'.s too S_mall thereis a d_"eCt_ and for Two- and Three-Dimensional Tubes Calculated from
crossover from classical to one-dimensional OZ behavior with the Maxima of the Derivatives of the Kinetic Exponents

no passage through two-dimensional kinetics. This direct (Fourth, Fifth, and Sixth Columns)a

crossover is seen in our results fdtbelow 10. Thus the critical 2

. - . . (DIWB)to—1,  (DIWP)tzg,
width V\_/C to observe the transition between two OZ regimes is (DWAt—y,  maximum  maximum  (D/MA)ts .,
approximately 10 for our parameters. As noted earlier, we linear fits  derivative  derivative =~ maximum
concentrate on the reginwe > W, (W, can be further decreased D W (Figured) (Figure5) (Figure8) derivative
by choosing larger values for the reaction rate coefficiént 0.050 30 0.040 0.036 0.035
and the initial density(0)). (vi) The kinetic exponent in the 0.050 25 0.036
two-dimensional OZ regime in our simulations is robust with  0.050 20 0.043 0.034 0.036 0.035
respect to changes W andD and is approximately equal to 0.050 15 0.043 0.034 0.038 0.036
—0.52. The 4% deviation from the asymptotic OZ value= 0.025 15 0.038 0.033 0.038 0.034

e o y 0.100 15 0.048 0.034 0.038 0.037

—1/2 is due to the fact tha¢ is finite in our model whereas the ) _ _
theoretical—d/4 exponent is obtained from an infinite local ?In the sixth column\W; is the same a®V in the second column,

reaction rate (and, furthermore, it is asymptoticexponent). while W, = 40 = constant.

We could diminish this difference by taking larger values for
K. In any case, the deviation is very small in comparison with

the noisy and nonrobust exponents obtained from the Monte i .
y P W, shown in Figure 3 on a single graph of the exponditas

Carlo simulations. . . .
Having established the clear presence of crossover behavior 2 function of the scaled variabt®/ W2 All the curves indeed

we next wish to determine the crossover titae; from two- collap_se es;entially onto a single curve that clearly display_s_ the
dimensional to one-dimensional behavior. Lin and Kopefnan two-dimensional pla}teau at early times follpwed by a.trans[tlon
directly use concentration decay curves in their random walker around the scaled time 0.034 toward the final one-dimensional
analysis. They linearly fit the data of the temporal evolution of plateau. ) ) ) ) ]
p(t)~L — p(0)~1 before and after the dimensional crossover and Next we conS|der three-dimensional tubular Ia}ttlces of size
take the time at which the two linear fittings cross. This method 1000x W x W, that s, tubes of square cross section, and again
leads to some “unexpected powers” when trying to stale carry out two series of caIc_uIanns; in one we fix the diffusion
with W, and the authors recognize that this is probably not the coefficient and vary¥, and in the other we fiX and varyD.
optimal way to obtain the dimensional crossover times. To The kinetic expo_nents.for all cases exhibit a direct crossover
reconfirm the difficulties we apply the same procedure in Figure from the three-dimensional plateau value-68/4 to the one-
4 to our two series of calculations. We collect the resulting dimensional exponent1/4, and the scaling witl> andW is
intersections in Table 1 and observe that indeed this method is@gain excellent. We show the scaled results for the exponents
not suitable for our purposes: the variations in the scaled In Figure 7.
intersection are greater than 20% (and no other scaling does To determine the crossover timigs; from three-dimensional
better). OZ behavior to one-dimensional OZ behavior, we again
A more robust measure of the dimensional crossover time is determine the maximum values qi/dt. The derivative curves
obtained as the time at which the expongnéxperiences its are shown in Figure 8, and their maxima are tabulated in Table
greatest change, i.e., the time at which the derivativetcas 1. The scaled time is again nearly constant with a value of about
a maximum. Note that this measure is effective only with 0.037 within a scatter of about4%.
sufficiently noiseless and accurate data and would be impossible Finally, we consider three-dimensional tubular lattices but
to implement using available Monte Carlo results. Figure 5 of rectangular cross section. The size of the lattice is 1000
shows the derivative curves. The maxima of these curves canW, x W,. By appropriate choices df\, and\W, one can now
easily be determined with great accuracy and the results areobserve two separate crossovers, one from OZ-3d to OZ-2d
also shown in Table 1. Clearly there is nearly perfect scaling: behavior and another subsequent one from OZ-2d to OZ-1d.
t,—1D/W2 is essentially constant over all the runs. We fix the value ofWy, = 40 and carry out two series of

The most demanding test for the scaling properties-ofis
shown in Figure 6, where we redisplay all the results\Vibr
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Figure 5. Temporal evolution of the first derivative of the expongmntith respect to time for two-dimensional tubes for the cases shown in Figure
3. The crossover times—; are found from the maxima ofuddt. Table 1 contains these results.

-0.20
-0.30 |
-0.40 |
3
-050 |
/ —— W=15,D=0.05
I W=15,D=0.1
—0.60 Ji -—-- W=15D=0025 |
——- W=20,D=0.05
—-— W=30,0=0.05
-0.70 w ‘
0.00 0.05 , 010 0.15

tD/W

Figure 6. Exponentu(t) for two-dimensional tubes shown in Figure
3 but now as a function of scaled time.
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Figure 7. Exponentu(t) for three-dimensional tubes of square cross
section as a function of scaled time. The size of the tubes is X000
x W and each curve is an average over 10 realizations.

simulations. In one we fibD at 0.05 and vary\V,, and in the
other we fixW, at 15 and vanD. In all cases we tak®V, <

Wy, so that the first crossovets(,) takes place when the
aggregates reach tleboundary and the seconth(;) when
they reach the/ boundary. The results of the simulations are
shown in Figure 9. In all cases we see the “induction” period
toward three-dimensional OZ behavior, a transition to two-
dimensional OZ behavior, followed by the onset of another

transition toward one-dimensional behavior. The one-dimen-
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Figure 8. Temporal evolution of the first derivative of the exponent
u with respect to time for the cases shown in Figure 7. The crossover
timests—, are found from the maxima ofuddt. Table 1 contains these
results.
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Figure 9. Exponentu(t) for three-dimensional tubes of rectangular
cross section as a function of scaled time. The size of the tubes is 1000
x W, x W, andW, = 40 in all cases. Each curve is an average over
five realizations.

The crossover times—., andt,—4 from 3d to 2d OZ behavior
and from 2d to 1d OZ behavior respectively are again
determined from the maximum values ofi/dt. We have
ascertained that the curves exhibit two maxima. Those associated
with the first crossover are tabulated in Table 1. The scaled
times are again nearly constant with a value of about 0.035.

sional plateau is reached beyond the times shown in the figure.The second crossover times not shown in the table are also in

The scaling is irD/W sinceW, is held fixed.

excellent agreement with the results exhibited.
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An average of eq 6 over the system volume and over the initial

distribution of reactants, indicated by brackéts] gives
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Equation 5 for the difference variable is a simple linear
diffusion equation that can be solved trivially:
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Figure 10. We compare one realization of thié= 30-curve in Figure
3 with the 10-realization average.

1 —ike(r—r") .—DK?t,_ /.4
)/(I',t) :\_/Z fdrve ke( )e Dkt)/(l’ '0) (8)

whereV = []iL; = LyLy... is the system volume arid is the
length of the edge of the volume in directionFor periodic
boundary conditions, the vectlkrhas components = 2zni/L;
where the integen; ranges from—co to . The mean square
average of/(r,t) can be constructed directly from this solution,
and for a random initial distribution of reactants the res\lt is

p(0)  p(0)

We end this section with a commentary on some puzzling
results in the Monte Carlo simulations of Ahn etdhat they
are not able to explain and that we believe are entirely statistical
artifacts. In nearly all of their simulation results for the kinetic
exponent, upon reaching the plateau value appropriate for OZ
behavior in a particular dimensionality their exponent first
becomesnore negatie (“overshoots”) before proceeding to the
next crossover toward kess negatie value appropriate to a

9)

lower dimensionality. We see no such behavior: all of our
kinetic exponents behave monotonically with time, as one would
expect.

We confirmed the conclusions of1that this overshoot is
not related to boundary conditions (reflective vs periodic).

2 _—— —_—
O(r. = =y + > Il_ls

where the first term simply ensures the absence of a uniform
background as required under stoichiometric conditions and
where

Since the overshoot seems to be more pronounced for larger
systems, we conjecture that it is a statistical problem, despite
the fact that Ahn et d.present curves that are averaged over
many realizations (but perhaps not enough of them to smooth
out this artifact, as they are not enough to smooth out other Equation 9 is the last term on the right-hand side of eq 7.
noisy results). To support this conjecture we compared single The remainder of the analysis depends on the relation between
realizations in our reactiordiffusion approach with the cor-  [p?0and the global density(t) = [p0 In our earlier work8:?°
responding curves averaged over 10 realizations, not a largewe argued that for almost all distributions of interest, including
number but sufficient for all practical purposes. We carried out those of interest in this workp?C~ p(t). In almost all cases
these comparisons for many geometries (two-dimensional tubes the difference betweelp?Candp?(t) is of higher order than the
three-dimensional square and rectangular tubes), different initial leading contributions to either. An exception is the random
conditions, and different boundary conditions. In very many distribution (which is in fact our initial distribution), but the
cases we found results typified by Figure 10. Any single initial distribution remains random for only an extremely short
realization often shows an “overshoot” and/or an “undershoot”. time in constrained geometried € 4). As soon as segregation
Upon averaging, these nonmonotonicities average out and theeffects begin to set in the equality of the square of the average
resulting curve is monotonic as one would expect. and the average of the square becomes extremely accurate. We
thus invoke this relation for our further analysis and replace eq
7 with

—872Dn2t/L;2

e (20)

M s

S 1
_Lini

—o0

4. Theoretical Analysis

Although the reactiondiffusion system (eq 1) cannot be
solved exactly analytically, we have argued elsewh&?¢hat
for most initial conditions an analytic solution for the global
density and hence for the kinetic exponent accurate for almost
all timescanin fact be found as follows.

We introduce the difference and sum densities

S0 = —K(HO) — %0 (11)
This is a closed nonlinear differential equation for the global
density p(t).

The next step in our argument relies on the fact thatfer
4 the inhomogeneous terfy?[Idecays no more rapidly than
t=92, This has been shown in our earlier wb#R and is also

_ Pl — pg(r0) obtained explicitly below. It then follows that the slowest term

y(rD) 2 in the decay ofp?(t) must be the same as that @fsince
otherwise there is no possible source of cancellation of the

o(r ) = Par0) + pg(r0) 4) slowly decayingy2Cicontribution. Furthermore, i%(t) decays

' 2 no more rapidly thart=92 it follows immediately that gd/dt

decays more rapidly thas?. This then leads to the conclusion

The two parts of eq 1 transform into that the left-hand side of eq 11 is negligible compared to the
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other terms. For our further analysis we thus invoke the relation
p(0)  p(0)

to leading order
1/2
-t — 12
VI []s) (12)

In all our systems we take the initial densgf0) = 1.

For our two-dimensional tubds, = L andLy, = W. For the
three-dimensional systenig = L, Ly = W, L, = W,, and in
the case of a square cross sectith= W, = W. In all our
systems we takk to be sufficiently large that we can consider
it to be infinite, L — o, and hence we can convert the
corresponding sum to an integral. This immediately leadls to

p(t) = B H*=

00

Sx:IimE z

L=o L =

1

2Dt/ 2 00 — 872 2
o 8T _’f_mdye 872Dty2 _

1/2
(8\nDt)(13)

This leaves us with the discrete sum along each direction of
finite size. It is further useful to note that each discrete sum
can be written in two equivalent forms, the second obtained
from the original form by Laplace transforming the original
series 10 with respect tg reexpressing the resulting sum
according to formula 1.217.1 in Gradshteyn and RyZRi&knd
then inverse Laplace transforming:

0

_a-2Dp?
- z eBﬂDnt/\Nz:
WL,

[

_ 2,
Z e W2nZ/8Dt

——o00

1
S

— (14)
(8\71Dt)1/2 N

The first form converges rapidly for long times, while the second
converges rapidly for short times.

Let us specifically consider two-dimensional tubes. Our
analytic expression for the global density is then

1/2
e 8772Dn2t/W2

00

1
p(t) =|———
2(87Dt)2 WinE==

1/2
efv\ﬁnZISDt

0

1
P (15)
167Dt =,

The first line is most useful for long times, when the dynamics
approaches one-dimensional OZ with the associated kinetic
exponent—1/4, and the second is most useful for short times,
when the kinetic exponent is near the two-dimensional value
—1/2. In general, with eq 3 we now have analytic series
expressions fou(t).

Either of our series reproduces the numerical results to great
accuracy. In Figure 11 we show a typical comparison between
our simulation results and the outcome of our analytic series
for the kinetic exponeni(t). The agreement between the two
extends down to the earliest times below which the equality 12
breaks down. The persistent difference between the two es-

sentially parallel curves can be decreased by increasing the rate

coefficientK: we have ascertained that the numerical simulation
curve moves up toward the analytic curvekascreases, again
confirming the validity of assumption 12 for diffusion-limited
reactions except at the very earliest times. Similar agreement
is obtained using the “short time” analytic series expression. In
Figure 12 we exhibit the derivative of the kinetic exponent for

the curves in Figure 11. The maxima (and hence the crossover

times from OZ-2d to OZ-1d behavior) clearly agree. The precise
value of the maximum obtained from the serietisD/W? =
0.034.
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200.0 400.0 600.0

t
Figure 11. Solid curve: numerical integration results for the kinetic
exponentu(t) for a two-dimensional tube of widtkV = 30. Dashed
curve: result obtained using the first line of eq 15 including 1000 terms
in the series. The initial difference between the two curves reflects the
“induction” period from classical to OZ-2d behavior.
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200.0 600.0

Figure 12. Solid curve: derivative of the solid curve in Figure 11.
The maximum in the curve identifies the crossover time from OZ-2d
to OZ-1d behavior and corresponds to the first entry in the third column
of Table 1. Dashed curve: derivative of our analytic curve in Figure
11.

Remarkably, the crossover time is quite accurately obtained
from either series by retaining only tha = 0 andn = +1
terms. Thus, if we set

—2-2Nn?
og z eSnDnt/V\P

n=—oo

0 = 1+1 d |
: 4 2dlogt
1,1 d

~_ T4z —872Dt/W2
2 + 53 IogtIog(1+ 2e )

(16)

and solve for the time at which?a/dt?> = 0, we find

V\%tH =0.0336

On the other hand, if we set

17

(=]
— 2,
og z e\/\lanBDt

n=—oo

0 = 1+1 d |
: 2 2dlogt

d
dlogt

~ =5+ 2 0 og(1+ 26 Y (18)

we find
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D — 0.0331 19 intersection point of a straight line fit to the short-time data for

WtZﬂ e (19) the kinetic exponent and another straight line fit to the long-

time data. No attempt is made to identify the coefficient(s) in
The agreement with the simulation results is excellent (and canthe scaling relation: the data are in any case too noisy for the
obviously be further improved by retaining more terms in either extraction of such quantitative information. Furthermore, even

series). though one expects the kinetic exponent to vary monotonically
For three-dimensional tubes of square cross section thewith time, the Monte Carlo simulations exhibit nonmonotonici-
corresponding analysis leads to ties (“overshoots”) that appear to have no clear explanation.

Here we have analyzed these systems using a mesoscopic
1 d Y approach, namely, a reactiodiffusion model, and we have
put)y =——+ log Z e thereby avoided most of the Monte Carlo difficulties. As long
4 dlogt ~nS=e as one is not looking at extremely short distance and time scales

1 d © i or extremely low densities, the reactiediffusion model is
=——-+ log z g Wonrent (20) known to reproduce the microscopic results extremely ac-
2 dlogt = nFw curately® Small differences due to the finite reaction rate

o o coefficientK in the reaction-diffusion model as opposed to
Although the kinetic exponent here is different from that of the 4 infinite value implicit in the Monte Carlo simulation are
two-dimensional tube (as of course it should be), the condition 5meliorated to any desired degree by takia be very large.
for identifying the crossover time’d/dt* = 0 leads to exactly  The average already inherent in the reactidiffusion approach

the same result fof;1 as fort,.. The numerical crossover — achjeves to a large extent the average over huge numbers of
times for this case are slightly larger (see Table 1) for reasonsns that are necessary at the Monte Carlo level, and we find

that are not entirely clear, but the agreement is still excellent. \ha¢ 510 realizations over different initial conditions are
For three-dimensional tubes of rectangular cross section sufficient to obtain quantitatively smooth and robust results.

© One clear conclusion of our results is that the kinetic

u(t) = — } +E log o 8TDMNG | exponentg(t) are ir_ldeed monotonic in all cases. We argue Fhat

4 2dlogt & the “overshoots” in the Monte Carlo results are statistical

d 1 @ artifacts of insufficient averaging. Many single reaction
log- g BTN diffusion realizations show similar oscillations, but they average
dlogt 2.4 out very quickly &5 realizations).
" The principal positive outcome of this work is our ability to
- _ } +} d o o Win?/sDt | obtain the kinetic exponent with no noisy distortions, and our
2 2dlogt 9 :Z ability to obtain quantitative crossover times from one type of
n 00 .

OZ behavior to another. Because our results are so smooth and
1 d st robust, we are able to explore different crossover measures and

Ed Iogtlog Z e (21) conclude that the intersection point of linear fits to early and

n=—oo

late time behavior ofi(t) is not the best measure. Instead, we
. . hoose the time at whicf(t) has its maximum curvature, i.e.
If W, andW, are sufficiently different, e.g\W, > W, (as the €hao . Lo v
Y z y &9V 2 ( y the time at which &(t)/dt? = 0. This criterion of course requires

are in our simulations), there is essentially no interference
between the maxima associated with each sum and one findsSmOOth and robust data fa(t). In Table 1 we show the results,

that ts -2DME ~ tp 1D /\Nf, = 0.034. AsW, and W, approach which are es:TentlaII%/ constantlover ? \(/jarcl)ety c}:f geomeltrles Ianpl
one another these crossover times merge to the square cros Jarameter va ues when properly scaled. urt' eoret|ca. analysts

. . eads to our prediction for these crossover times, universally
section single crossover result.

denoted byt
5. Conclusions

VVZ
We have investigated the kinetic behavior of the global tc:0-0343 (22)

density pa(t) = ps(t) = p(t) as a function of time for the

stoichiometric diffusion-limited reaction A B — 0 in tubular whereD is the diffusion constant of either species. This is in
geometries with random initial distributions of reactants. Of excellent agreement with our numerical results.

particular interest are the transitions of the kinetic exponent  Finally, it is interesting to speculate on the significance of

u(t) = d log p(t)/d log t from Ovchinnikov-Zeldovich (OZ) the coefficient 0.034. It is in line with the coefficient associated
behavior characteristic af dimensions to that associated with  with the mean first passage time for a diffusive process with

a lower dimension as the reactants become “aware” of the random initial conditions to arrive at the wall: this time is given
presence of constraining walls. For two-dimensional tubular py t; = We/24D = 0.04MW2/D.11

geometries we investigated the crossover tipg from OZ-

2d to OZ-1d behavior. In three-dimensional tubes the interesting
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