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Diffusion-controlled A+ B f 0 reactions in constrained geometries are well-known to obey nonconventional
dimension-dependent kinetics. We investigate these kinetics in narrowd-dimensional tubes to study the
crossovers from early timed-dimensional kinetics to eventual one-dimensional kinetics. We rely on a reaction-
diffusion model that leads to analytically verifiable quantitative results. The crossover times are identified as
those times at which the kinetic exponent exhibits maximum curvature and are shown to be universally given
by tc ) 0.034W2/D whereW is the width of the tube along a narrow direction andD is the diffusion coefficient
of both species. Our procedure overcomes many of the statistical difficulties inherent in Monte Carlo simulations
of this problem [Ahn, J.; Kopelman, R.; Argyrakis, P.J. Chem. Phys. 1999, 110, 2116].

1. Introduction

Diffusion-limited reactions in constrained geometries obey
reaction kinetics that exhibit completely different exponents than
do well-mixed systems. This behavior is well understood for a
large variety of reactions, starting with the original system A
+ B f 0 first studied by Ovchinnikov and Zeldovich.1,2 When
there are initially equal densities of A and B present in a random
distribution in an infinite system of dimensiond < 4, the density
F(t) of either species decays asymptotically asF(t) ∼ t-d/4. The
departure from the classical decay lawF(t) ∼ t-1 is obviously
dramatic in low dimensions and is due to the evolution of initial
fluctuations in the local species densities into ever larger regions
in which one or the other species is predominant. Only efficient
mixing can overcome this evolution toward segregation, and
diffusion is not sufficiently efficient in low dimensions.

Recent work3-5 deals with reaction kinetics of various types
and associated random walks in tubular geometries in which
the system is very long in one dimension but small in the
other(s). In these geometries the reactants or walkers at first
“don’t know” that they are moving in a confined space until
they “become aware” of the confining walls, at which point
one or more dimensions are effectively lost. Thus, it is expected
that the kinetic behavior at early times is two-dimensional or
three-dimensional (depending on the dimensionality of the tube)
but that asymptotically it becomes typical of that of a one-
dimensional system. There are a number of interesting cross-
overs in the time dependences of the reactant densities in such
tubular spaces as a function of various parameters such as the
tube width and the initial densities. For the A+ B reaction
Ahn et al.5 present a kinetic phase diagram showing a schematic
of the different regimes of behavior that are possible as a
function of the widthW (short directions) of a finite tube. For
example, for a two-dimensional tube with very smallW they

show that the density as a function of time behaves classically
up to a crossover timetc that scales asWR′ after which the
behavior is one-dimensional. For wider tubes there are two
crossovers, the first from classical to two-dimensional behavior
at aW-independent crossover time, followed by a crossover from
two-dimensional to one-dimensional behavior at a time that
scales astc ∼ WR. They discuss the exponentsR′ andR in detail.
In particular, for Euclidean tubes the crossover times from
behavior characteristic of a higher dimension to one of lower
dimension scale astc ∼ W2 (i.e., R ) 2).

To support these and other results, Ahn et al. carry out
extensive Monte Carlo simulations on discrete cubic lattices.
The results are presented as graphs of the time-dependent
exponentµ (which they call-f) in the relationF ∼ tµ. The
exponentµ crosses over from one plateau value to another and
perhaps another; each plateau value is identified as the exponent
characteristic of a particular regime (e.g., two-dimensional
plateau followed by one-dimensional plateau) with crossover
times whoseW-dependence is difficult to ascertain from these
simulations other than to support consistency with previous
results.3,4 The simulations are done on large systems (several
thousand lattice sites along the long direction, between 1 and
20 in the short directions) with many particles that have to be
individually tracked, and averaged over many thousands of runs.
Nevertheless, even their most accurate (and very CPU-intensive)
results are rather noisy and exhibit unexplained behavior that
may or may not be artifactual (we believe it is, as will be noted
below).

In this paper we revisit this problem, that is, we study the
kinetics of the stoichiometric A+ B f 0 reaction in tubular
spaces, but using methods that permit more accurate determi-
nation of some exponents and crossovers. In particular, we study
the change in kinetic behavior in tubular geometries due to the
reduction of dimensionality. We determine not only scaling
behaviors with great accuracy, but we also determinecoefficients
(which turn out to exhibit surprising universality).

† Permanent address: Departament de Quı´mica-Fı́sica, Universitat de
Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain.
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In section 2 we present our model and discuss the particular
quantities to be obtained from it. In section 3 we present our
simulation results, which are further elucidated by a theoretical
analysis in section 4. A short commentary on the overshoot
artifacts of Ahn et al.5 is also offered in section 3. We conclude
with a summary in section 5.

2. The Model

The approach of Ahn et al. is microscopic. We rely on a more
mesoscopic approach to the problem, namely the reaction-
diffusion equations for the local densitiesFA(r ,t) and FB(r ,t):

whereD is the diffusion coefficient for both species andK is
the local reaction rate constant. Although these continuum
equations may fail on the very shortest time scales, shortest
distances, and very low densities, they reproduce the kinetic
features of the discrete microscopic system with remarkable
accuracy on almost all scales6 and are much easier and less
costly to deal with numerically than the fully microscopic
description.7-9 A quantitative comparison of the results of
integrating these coupled differential equations with those
obtained from random walkers of types A and B on a discrete
lattice that annihilate upon contact requires connection to be
made between the lattice constant and time steps in the discrete
problem and the parametersD andK in the continuum model.6

As long as we are primarily interested in comparing scaling
behavior, it is not necessary to dwell on this point other than to
note that the discrete simulations correspond to the limitK f
∞ for the reaction rate constant. In our simulations we takeK
to be very large, so large that its finite value is of little
consequence for this discussion. Note that the global density
F(t) introduced earlier is just the integral ofFA(r ,t) or of FB(r ,t)
over the reaction volume.

A typical realization of the process obtained by numerical
integration of the reaction-diffusion equations for a two-

dimensional tubular space is shown in Figures 1 and 2. In Figure
1 reactant A is shown in red and reactant B in blue, and we see
five consecutive time snapshots of the local densities. In each
snapshot we show the color corresponding to the locally more
abundant reactant. In order to observe the segregation process
more explicitly, we show in Figure 2 the complementary map
of reaction zones, namely, the product of the local concentra-
tions, in levels of gray. The initial segregation pattern evolves
well before the segregated clusters reach the boundaries: this
is evident in the second snapshot. This initial segregation occurs
according to two-dimensional Ovchinnikov-Zeldovich (OZ)
kinetics characterized by the decayF(t) ∼ t-1/2. After some time,
the clusters of A and B become comparable in size to the width
of the tube. Beyond this time the further evolution of the system
proceeds according to one-dimensional OZ kineticsF(t) ∼ t-1/4.
The transition between these two regimes occurs at the so-called
crossover time whose scaling behavior has motivated a con-
siderable share of the previous work on the subject.

In this report we focus on the transitions between one OZ
regime and another, namely, on transitions from OZ-2d to OZ-
1d, from OZ-3d to OZ-1d, and from OZ-3d to OZ-2d. We do
not analyze the situation (found for very narrow systems) where
the transition occurs directly from the classical regime to the
OZ regime of lowest dimensionality. In particular, we concen-
trate on the crossover timestd1fd2 from OZ behavior associated
with dimensiond1 to that associated with lower dimensiond2.
These crossover times are obtained from density decay curves.
We wish to establish the dependence of these crossover times
on the width of the system and on the other parameters of the
model, specifically the diffusion coefficient.

It is in fact straightforward (and correct) to argue that the
crossover times should scale as

This is a direct consequence of the fact that with free diffusion
(which describes the local density difference between the two
species6) the segregated zones grow in any direction asxDt
and that the boundaries of the system will be perceived when
this length is of the order of the tube width,W ∼ xDt.
Although eq 2 is correct, it has been difficult to corroborate it

Figure 1. Time snapshots of the diffusion-limited reaction A+ B f 0 in a narrow two-dimensional tube. The more abundant local density is
shown in (A) red or (B) blue. At first the evolution follows two-dimensional OZ kinetics, but after some time (at around the time of the third or
fourth snapshot) the evolution proceeds according to one-dimensional OZ kinetics.

∂

∂t
FA ) D∇2FA - KFAFB

∂

∂t
FB ) D∇2FB - KFAFB (1)

td1fd2
∼ W2

D
(2)
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firmly from numerical simulations.5 Furthermore, the coefficient
in the relation has not been calculated or determined numeri-
cally. We shall do both using the reaction-diffusion model.

Our numerical solution of the reaction-diffusion model (eq
1) relies on a standard discrete scheme with a centered form
for the Laplacian operator, a forward difference in time, and
periodic boundary conditions. We taked-dimensional lattices
and stoichiometric and randomly (absolutely uncorrelated) initial
distributions for the reactants. In all the simulations shown in
this work we takeK ) 10 andF(0) ) 1. The discretization
parameters are∆t ) 0.01 and∆x ) 1 and are small enough to
ensure numerical convergence.

Lin and Kopelman3 and also Ahn et al.5 use reflecting rather
than periodic boundary conditions along the shorter dimension-
alities of the tubes. We have carefully ascertained within our
model (and Li does as well within his random walk approach4)
that this does not lead to any significant differences in the results.

The output of our numerical integrations yields the full time
history of the decay of concentrations. We are specifically
interested in the kinetic exponentµ. By following the temporal
evolution of this exponent we can easily observe and identify
how the kinetic behavior changes from one regime to another.
We numerically computeµ in the following way:

3. Numerical Results

First we present our results for two-dimensional tubes and
subsequently for three-dimensional ones.

We take our two-dimensional tubes to have a lengthL )
5000 and widthW and carry out two series of calculations. In
one we fix the diffusion coefficientD ) 0.05 and varyW
between 4 and 30. In the other we fixW ) 15 and varyD from
0.025 to 0.1. The evolution of the resulting kinetic exponents
µ(t) for both series is shown in Figure 3.

The following features are immediately apparent from these
results: (i) The first plateau corresponds to the two-dimensional
OZ regime. The kinetic exponent goes through a short “induc-
tion” period from the very early classical behavior (µ ∼ -1) in
which the kinetics is dominated by the reaction of A and B
densities initially in the same discretization cells toward this
plateau. This induction period isD dependent butW indepen-
dent. (ii) Two-dimensional OZ behavior (µ ≈ -1/2) persists
for a longer time with increasingW. (iii) IncreasingD leads to
a shortening of the two-dimensional OZ interval (the process
“arrives” at the boundaries more quickly). (iv) The transition

Figure 2. Reaction zones (product of local densities) in different levels of gray for the same system and the same snapshots as shown in Figure
1. Darker areas represent regions where the product is larger.

Figure 3. Exponentµ(t) as a function of time for narrow two-dimensional systems of lengthL ) 5000 and widthW. In the left partD ) 0.05 is
fixed andW is varied. In the right partW ) 15 andD is varied. Each curve is an average over 10 realizations.

µ(t) )
d log F(t)

d log t
w µ(ti) ≈ log F(ti) - log F(ti-1)

log ti - ti-1
(3)
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to the asymptotic one-dimensional OZ behavior (µ ≈ -1/4) is
clear in all the simulations. (v) IfW is too small there is a direct
crossover from classical to one-dimensional OZ behavior with
no passage through two-dimensional kinetics. This direct
crossover is seen in our results forWbelow 10. Thus the critical
width Wc to observe the transition between two OZ regimes is
approximately 10 for our parameters. As noted earlier, we
concentrate on the regimeW> Wc (Wc can be further decreased
by choosing larger values for the reaction rate coefficientK
and the initial densityF(0)). (vi) The kinetic exponent in the
two-dimensional OZ regime in our simulations is robust with
respect to changes inW andD and is approximately equal to
-0.52. The 4% deviation from the asymptotic OZ valueµ )
-1/2 is due to the fact thatK is finite in our model whereas the
theoretical-d/4 exponent is obtained from an infinite local
reaction rate (and, furthermore, it is anasymptoticexponent).
We could diminish this difference by taking larger values for
K. In any case, the deviation is very small in comparison with
the noisy and nonrobust exponents obtained from the Monte
Carlo simulations.5

Having established the clear presence of crossover behavior,
we next wish to determine the crossover timet2f1 from two-
dimensional to one-dimensional behavior. Lin and Kopelman3

directly use concentration decay curves in their random walker
analysis. They linearly fit the data of the temporal evolution of
F(t)-1 - F(0)-1 before and after the dimensional crossover and
take the time at which the two linear fittings cross. This method
leads to some “unexpected powers” when trying to scalet2f1

with W, and the authors recognize that this is probably not the
optimal way to obtain the dimensional crossover times. To
reconfirm the difficulties we apply the same procedure in Figure
4 to our two series of calculations. We collect the resulting
intersections in Table 1 and observe that indeed this method is
not suitable for our purposes: the variations in the scaled
intersection are greater than 20% (and no other scaling does
better).

A more robust measure of the dimensional crossover time is
obtained as the time at which the exponentµ experiences its
greatest change, i.e., the time at which the derivative dµ/dt has
a maximum. Note that this measure is effective only with
sufficiently noiseless and accurate data and would be impossible
to implement using available Monte Carlo results. Figure 5
shows the derivative curves. The maxima of these curves can
easily be determined with great accuracy and the results are
also shown in Table 1. Clearly there is nearly perfect scaling:
t2f1D/W2 is essentially constant over all the runs.

The most demanding test for the scaling properties oft2f1 is
shown in Figure 6, where we redisplay all the results forW >
Wc shown in Figure 3 on a single graph of the exponentµ(t) as
a function of the scaled variabletD/W2. All the curves indeed
collapse essentially onto a single curve that clearly displays the
two-dimensional plateau at early times followed by a transition
around the scaled time 0.034 toward the final one-dimensional
plateau.

Next we consider three-dimensional tubular lattices of size
1000× W× W, that is, tubes of square cross section, and again
carry out two series of calculations; in one we fix the diffusion
coefficient and varyW, and in the other we fixW and varyD.
The kinetic exponents for all cases exhibit a direct crossover
from the three-dimensional plateau value of-3/4 to the one-
dimensional exponent-1/4, and the scaling withD andW is
again excellent. We show the scaled results for the exponents
in Figure 7.

To determine the crossover timest3f1 from three-dimensional
OZ behavior to one-dimensional OZ behavior, we again
determine the maximum values of dµ/dt. The derivative curves
are shown in Figure 8, and their maxima are tabulated in Table
1. The scaled time is again nearly constant with a value of about
0.037 within a scatter of about(4%.

Finally, we consider three-dimensional tubular lattices but
of rectangular cross section. The size of the lattice is 1000×
Wy × Wz. By appropriate choices ofWy andWz one can now
observe two separate crossovers, one from OZ-3d to OZ-2d
behavior and another subsequent one from OZ-2d to OZ-1d.
We fix the value ofWy ) 40 and carry out two series of

Figure 4. log-log plots ofF(t) vs time for the systems in Figure 3. The crossover timest2f1 from the two-dimensional OZ behavior (early times)
to the one-dimensional OZ behavior (asymptotic times) are found from the intersection of the linear fits (dashed lines) in both regimes. Table 1
contains these results.

TABLE 1: Crossover Times for Two-Dimensional Tubes
Calculated from Linear Fit Intersections (Third Column)
and for Two- and Three-Dimensional Tubes Calculated from
the Maxima of the Derivatives of the Kinetic Exponents
(Fourth, Fifth, and Sixth Columns)a

D W

(D/W2)t2f1,
linear fits
(Figure 4)

(D/W2)t2f1,
maximum
derivative
(Figure 5)

(D/W2)t3f1,
maximum
derivative
(Figure 8)

(D/Wz
2)t3f2,

maximum
derivative

0.050 30 0.040 0.036 0.035
0.050 25 0.036
0.050 20 0.043 0.034 0.036 0.035
0.050 15 0.043 0.034 0.038 0.036
0.025 15 0.038 0.033 0.038 0.034
0.100 15 0.048 0.034 0.038 0.037

a In the sixth columnWz is the same asW in the second column,
while Wy ) 40 ) constant.
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simulations. In one we fixD at 0.05 and varyWz, and in the
other we fixWz at 15 and varyD. In all cases we takeWz <
Wy, so that the first crossover (t3f2) takes place when the
aggregates reach thez boundary and the second (t2f1) when
they reach they boundary. The results of the simulations are
shown in Figure 9. In all cases we see the “induction” period
toward three-dimensional OZ behavior, a transition to two-
dimensional OZ behavior, followed by the onset of another
transition toward one-dimensional behavior. The one-dimen-
sional plateau is reached beyond the times shown in the figure.
The scaling is inD/Wz

2 sinceWy is held fixed.

The crossover timest3f2 andt2f1 from 3d to 2d OZ behavior
and from 2d to 1d OZ behavior respectively are again
determined from the maximum values of dµ/dt. We have
ascertained that the curves exhibit two maxima. Those associated
with the first crossover are tabulated in Table 1. The scaled
times are again nearly constant with a value of about 0.035.
The second crossover times not shown in the table are also in
excellent agreement with the results exhibited.

Figure 5. Temporal evolution of the first derivative of the exponentµ with respect to time for two-dimensional tubes for the cases shown in Figure
3. The crossover timest2f1 are found from the maxima of dµ/dt. Table 1 contains these results.

Figure 6. Exponentµ(t) for two-dimensional tubes shown in Figure
3 but now as a function of scaled time.

Figure 7. Exponentµ(t) for three-dimensional tubes of square cross
section as a function of scaled time. The size of the tubes is 1000× W
× W and each curve is an average over 10 realizations.

Figure 8. Temporal evolution of the first derivative of the exponent
µ with respect to time for the cases shown in Figure 7. The crossover
timest3f1 are found from the maxima of dµ/dt. Table 1 contains these
results.

Figure 9. Exponentµ(t) for three-dimensional tubes of rectangular
cross section as a function of scaled time. The size of the tubes is 1000
× Wy × Wz andWy ) 40 in all cases. Each curve is an average over
five realizations.
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We end this section with a commentary on some puzzling
results in the Monte Carlo simulations of Ahn et al.5 that they
are not able to explain and that we believe are entirely statistical
artifacts. In nearly all of their simulation results for the kinetic
exponent, upon reaching the plateau value appropriate for OZ
behavior in a particular dimensionality their exponent first
becomesmore negatiVe (“overshoots”) before proceeding to the
next crossover toward aless negatiVe value appropriate to a
lower dimensionality. We see no such behavior: all of our
kinetic exponents behave monotonically with time, as one would
expect.

We confirmed the conclusions of Li4 that this overshoot is
not related to boundary conditions (reflective vs periodic).

Since the overshoot seems to be more pronounced for larger
systems, we conjecture that it is a statistical problem, despite
the fact that Ahn et al.5 present curves that are averaged over
many realizations (but perhaps not enough of them to smooth
out this artifact, as they are not enough to smooth out other
noisy results). To support this conjecture we compared single
realizations in our reaction-diffusion approach with the cor-
responding curves averaged over 10 realizations, not a large
number but sufficient for all practical purposes. We carried out
these comparisons for many geometries (two-dimensional tubes,
three-dimensional square and rectangular tubes), different initial
conditions, and different boundary conditions. In very many
cases we found results typified by Figure 10. Any single
realization often shows an “overshoot” and/or an “undershoot”.
Upon averaging, these nonmonotonicities average out and the
resulting curve is monotonic as one would expect.

4. Theoretical Analysis

Although the reaction-diffusion system (eq 1) cannot be
solved exactly analytically, we have argued elsewhere6,8,9 that
for most initial conditions an analytic solution for the global
density and hence for the kinetic exponent accurate for almost
all timescan in fact be found as follows.

We introduce the difference and sum densities

The two parts of eq 1 transform into

An average of eq 6 over the system volume and over the initial
distribution of reactants, indicated by brackets〈...〉, gives

Equation 5 for the difference variable is a simple linear
diffusion equation that can be solved trivially:

whereV ) ∏iLi ) LxLy... is the system volume andLi is the
length of the edge of the volume in directioni. For periodic
boundary conditions, the vectork has componentski ) 2πni/Li

where the integerni ranges from-∞ to ∞. The mean square
average ofγ(r ,t) can be constructed directly from this solution,
and for a random initial distribution of reactants the result is6

where the first term simply ensures the absence of a uniform
background as required under stoichiometric conditions and
where

Equation 9 is the last term on the right-hand side of eq 7.
The remainder of the analysis depends on the relation between
〈F2〉 and the global densityF(t) ) 〈F〉. In our earlier work6,8,9

we argued that for almost all distributions of interest, including
those of interest in this work,〈F2〉 ≈ F2(t). In almost all cases
the difference between〈F2〉 andF2(t) is of higher order than the
leading contributions to either. An exception is the random
distribution (which is in fact our initial distribution), but the
initial distribution remains random for only an extremely short
time in constrained geometries (d < 4). As soon as segregation
effects begin to set in the equality of the square of the average
and the average of the square becomes extremely accurate. We
thus invoke this relation for our further analysis and replace eq
7 with

This is a closed nonlinear differential equation for the global
densityF(t).

The next step in our argument relies on the fact that ford <
4 the inhomogeneous term〈γ2〉 decays no more rapidly than
t-d/2. This has been shown in our earlier work6,8,9 and is also
obtained explicitly below. It then follows that the slowest term
in the decay ofF2(t) must be the same as that of〈γ2〉 since
otherwise there is no possible source of cancellation of the
slowly decaying〈γ2〉 contribution. Furthermore, ifF2(t) decays
no more rapidly thant-d/2 it follows immediately that dF/dt
decays more rapidly thanF2. This then leads to the conclusion
that the left-hand side of eq 11 is negligible compared to the

Figure 10. We compare one realization of theW) 30-curve in Figure
3 with the 10-realization average.

γ(r ,t) )
FA(r ,t) - FB(r ,t)

2

F(r ,t) )
FA(r ,t) + FB(r ,t)

2
(4)

∂

∂t
γ ) D∇2γ (5)

∂

∂t
F ) D∇2F - K(F2 - γ2) (6)

∂

∂t
〈F〉 ) -K(〈F2〉 - 〈γ2〉) (7)

γ(r ,t) )
1

V
∑

k
∫ dr ′e-ik‚(r-r ′)e-Dk2tγ(r ′,0) (8)

〈γ2(r ,t)〉 ) -
F(0)

2V
+

F(0)

2
∏

i

Si (9)

Si ≡
1

Li
∑

ni)-∞

∞

e-8π2Dni
2t/Li

2
(10)

∂

∂t
F(t) ) -K(F2(t) - 〈γ2〉) (11)
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other terms. For our further analysis we thus invoke the relation
to leading order

In all our systems we take the initial densityF(0) ) 1.
For our two-dimensional tubesLx ) L andLy ) W. For the

three-dimensional systemsLx ) L, Ly ) Wy, Lz ) Wz, and in
the case of a square cross sectionWy ) Wz ) W. In all our
systems we takeL to be sufficiently large that we can consider
it to be infinite, L f ∞, and hence we can convert the
corresponding sum to an integral. This immediately leads to6

This leaves us with the discrete sum along each direction of
finite size. It is further useful to note that each discrete sum
can be written in two equivalent forms, the second obtained
from the original form by Laplace transforming the original
series 10 with respect tot, reexpressing the resulting sum
according to formula 1.217.1 in Gradshteyn and Ryzhik,10 and
then inverse Laplace transforming:

The first form converges rapidly for long times, while the second
converges rapidly for short times.

Let us specifically consider two-dimensional tubes. Our
analytic expression for the global density is then

The first line is most useful for long times, when the dynamics
approaches one-dimensional OZ with the associated kinetic
exponent-1/4, and the second is most useful for short times,
when the kinetic exponent is near the two-dimensional value
-1/2. In general, with eq 3 we now have analytic series
expressions forµ(t).

Either of our series reproduces the numerical results to great
accuracy. In Figure 11 we show a typical comparison between
our simulation results and the outcome of our analytic series
for the kinetic exponentµ(t). The agreement between the two
extends down to the earliest times below which the equality 12
breaks down. The persistent difference between the two es-
sentially parallel curves can be decreased by increasing the rate
coefficientK: we have ascertained that the numerical simulation
curve moves up toward the analytic curve asK increases, again
confirming the validity of assumption 12 for diffusion-limited
reactions except at the very earliest times. Similar agreement
is obtained using the “short time” analytic series expression. In
Figure 12 we exhibit the derivative of the kinetic exponent for
the curves in Figure 11. The maxima (and hence the crossover
times from OZ-2d to OZ-1d behavior) clearly agree. The precise
value of the maximum obtained from the series ist2f1D/W2 )
0.034.

Remarkably, the crossover time is quite accurately obtained
from either series by retaining only then ) 0 andn ) (1
terms. Thus, if we set

and solve for the time at which d2µ/dt2 ) 0, we find

On the other hand, if we set

we find

F(t) ) 〈γ2(r ,t)〉1/2 ) (-
F(0)

2V
+

F(0)

2
∏

i

Si)1/2

(12)

Sx ) lim
Lf∞

1

L
∑

n)-∞

∞

e-8π2Dn2t/L2
f ∫-∞

∞
dye-8π2Dty2

)
1

(8πDt)1/2

(13)

S≡ 1

W
∑

n)-∞

∞

e-8π2Dn2t/W2
)

1

(8πDt)1/2
∑

n)-∞

∞

e-W2n2/8Dt (14)

F(t) ) ( 1

2(8πDt)1/2

1

W
∑

n)-∞

∞

e-8π2Dn2t/W2)1/2

) ( 1

16πDt
∑

n)-∞

∞

e-W2n2/8Dt)1/2

(15)

Figure 11. Solid curve: numerical integration results for the kinetic
exponentµ(t) for a two-dimensional tube of widthW ) 30. Dashed
curve: result obtained using the first line of eq 15 including 1000 terms
in the series. The initial difference between the two curves reflects the
“induction” period from classical to OZ-2d behavior.

Figure 12. Solid curve: derivative of the solid curve in Figure 11.
The maximum in the curve identifies the crossover time from OZ-2d
to OZ-1d behavior and corresponds to the first entry in the third column
of Table 1. Dashed curve: derivative of our analytic curve in Figure
11.

µ(t) ) -
1

4
+

1

2

d

d log t
log ∑

n)-∞

∞

e-8π2Dn2t/W2

≈ - 1
4

+ 1
2

d
d log t

log(1 + 2e-8π2Dt/W2
) (16)

D

W2
t2f1 ) 0.0336 (17)

µ(t) ) -
1

2
+

1

2

d

d log t
log ∑

n)-∞

∞

e-W2n2/8Dt

≈ - 1
2

+ 1
2

d
d log t

log(1 + 2e-W2/8Dt) (18)
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The agreement with the simulation results is excellent (and can
obviously be further improved by retaining more terms in either
series).

For three-dimensional tubes of square cross section the
corresponding analysis leads to

Although the kinetic exponent here is different from that of the
two-dimensional tube (as of course it should be), the condition
for identifying the crossover time d2µ/dt2 ) 0 leads to exactly
the same result fort3f1 as for t2f1. The numerical crossover
times for this case are slightly larger (see Table 1) for reasons
that are not entirely clear, but the agreement is still excellent.
For three-dimensional tubes of rectangular cross section

If Wy andWz are sufficiently different, e.g.,Wy . Wz (as they
are in our simulations), there is essentially no interference
between the maxima associated with each sum and one finds
that t3f2D/Wz

2 ≈ t2f1D/Wy
2 ) 0.034. AsWz and Wy approach

one another these crossover times merge to the square cross-
section single crossover result.

5. Conclusions

We have investigated the kinetic behavior of the global
density FA(t) ) FB(t) ) F(t) as a function of time for the
stoichiometric diffusion-limited reaction A+ B f 0 in tubular
geometries with random initial distributions of reactants. Of
particular interest are the transitions of the kinetic exponent
µ(t) ≡ d log F(t)/d log t from Ovchinnikov-Zeldovich (OZ)
behavior characteristic ofd dimensions to that associated with
a lower dimension as the reactants become “aware” of the
presence of constraining walls. For two-dimensional tubular
geometries we investigated the crossover timet2f1 from OZ-
2d to OZ-1d behavior. In three-dimensional tubes the interesting
crossovers aret3f1 for tubes of square cross section andt3f2

followed by t2f1 for tubes of rectangular cross section.
These systems were first investigated using Monte Carlo

methods.5 Despite the very large numbers of particles in very
long tubes averaged over extremely large numbers of realiza-
tions, the data that emerge from these microscopic simulations
are very noisy. At best the data support the expectation that the
crossover times scale astd1fd2 ∼ W2, whereW is the tube width
along a narrow direction. This scaling is identified via the

intersection point of a straight line fit to the short-time data for
the kinetic exponent and another straight line fit to the long-
time data. No attempt is made to identify the coefficient(s) in
the scaling relation: the data are in any case too noisy for the
extraction of such quantitative information. Furthermore, even
though one expects the kinetic exponent to vary monotonically
with time, the Monte Carlo simulations exhibit nonmonotonici-
ties (“overshoots”) that appear to have no clear explanation.

Here we have analyzed these systems using a mesoscopic
approach, namely, a reaction-diffusion model, and we have
thereby avoided most of the Monte Carlo difficulties. As long
as one is not looking at extremely short distance and time scales
or extremely low densities, the reaction-diffusion model is
known to reproduce the microscopic results extremely ac-
curately.6 Small differences due to the finite reaction rate
coefficient K in the reaction-diffusion model as opposed to
the infinite value implicit in the Monte Carlo simulation are
ameliorated to any desired degree by takingK to be very large.
The average already inherent in the reaction-diffusion approach
achieves to a large extent the average over huge numbers of
runs that are necessary at the Monte Carlo level, and we find
that 5-10 realizations over different initial conditions are
sufficient to obtain quantitatively smooth and robust results.

One clear conclusion of our results is that the kinetic
exponentsµ(t) are indeed monotonic in all cases. We argue that
the “overshoots” in the Monte Carlo results are statistical
artifacts of insufficient averaging. Many single reaction-
diffusion realizations show similar oscillations, but they average
out very quickly (≈5 realizations).

The principal positive outcome of this work is our ability to
obtain the kinetic exponent with no noisy distortions, and our
ability to obtain quantitative crossover times from one type of
OZ behavior to another. Because our results are so smooth and
robust, we are able to explore different crossover measures and
conclude that the intersection point of linear fits to early and
late time behavior ofµ(t) is not the best measure. Instead, we
choose the time at whichµ(t) has its maximum curvature, i.e.,
the time at which d2µ(t)/dt2 ) 0. This criterion of course requires
smooth and robust data forµ(t). In Table 1 we show the results,
which are essentially constant over a variety of geometries and
parameter values when properly scaled. Our theoretical analysis
leads to our prediction for these crossover times, universally
denoted bytc:

whereD is the diffusion constant of either species. This is in
excellent agreement with our numerical results.

Finally, it is interesting to speculate on the significance of
the coefficient 0.034. It is in line with the coefficient associated
with the mean first passage time for a diffusive process with
random initial conditions to arrive at the wall: this time is given
by t1 ) W2/24D ) 0.041W2/D.11
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